

Introduction

The Assessment Practice Book directs the teachers on how to effectively make use of assessments in their classrooms. The Assessment Practice Book covers components of formative assessments, such as class tests, worksheets, homework, and quizzes. The teachers and students focus on common learning goals and work towards achieving them together.

The worksheets enhance an understanding of students' learning in many ways, and challenges them to approach and decipher the same concepts from different angles. The students also benefit from different types of assessments, as each type offers the student comprehensive feedback that will eventually guide them towards successfully arriving at their learning objectives.

Contents

Unit 1 Whole Numbers and Operations

Practice Sheet 15
Practice Sheet $2 \quad 6$
Practice Sheet 38
Practice Sheet $4 \quad 10$
Practice Sheet $5 \quad 12$
Practice Sheet $6 \quad 14$
Practice Sheet $7 \quad 15$
Unit 2 Factors and Multiples
Practice Sheet $1 \quad 16$
Practice Sheet $2 \quad 17$
Unit 3 Fractions
Practice Sheet $1 \quad 19$
Practice Sheet $2 \quad 21$
Practice Sheet 322
Unit 4 Decimals
Practice Sheet 1
Practice Sheet $2 \quad 26$
Practice Sheet $3 \quad 28$
Practice Sheet $4 \quad 30$
Practice Sheet $5 \longrightarrow 32$
Unit 5 Measurements
Practice Sheet $1 \quad 33$
Practice Sheet $2 \square 35$
Practice Sheet $3 \quad 37$
Practice Sheet $4 \quad 39$
Practice Sheet $5 \quad 41$
Practice Sheet $6 \quad 43$
Practice Sheet 744
Unit 6 Geometry
Practice Sheet $1 \quad 47$
Practice Sheet 249
Practice Sheet $3 \quad 51$
Practice Sheet 453
Practice Sheet $5 \quad 54$
Unit 7 Data Handling
Practice Sheet $1 \quad 56$
Practice Sheet 259
Practice Sheet $3 \quad 61$

1.1 Whole Numbers

i. Identify place values of digits up to one hundred thousand $(100,000)$.
ii. Read numbers up to one hundred thousand $(100,000)$.
iii. Write numbers up to one hundred thousand $(100,000)$.
iv. Write numbers in words up to one hundred thousand $(100,000)$.
v. Compare and order numbers up to 5 - digits.

1. Write the place value of each underlined digit. The words given in the box will assist you.

	ones	thousands	hundreds			tens	ten thousands
a) $1 \underline{9} 409$		b) $\underline{2} 51643$					
c) $1034 \underline{\underline{5}} 6$		d) $4732 \underline{9}$					
e) $564 \underline{\underline{2}} 41$		f) $\underline{1} 00088$					

2. Complete the expanded form.

3. Write these numbers in words.
a) 37942
b) 628807
c) 420551
d) 200368
e) 573005
4. Fill in the blanks with $<$ or $>$ to compare the given numbers.

a) $65356 \square 65358$	b) $32567 \square 23578$	c) $6538 \square 789$
d) $90003 \square 89990$	e) $182 \square 8276$	f) $26734 \square 26834$

5. Write these numbers in descending order. (from largest to smallest)

a)	7712	1772	2117	
b)	1345	14534	1036	
c)	22456	23678	21556	
d)	43256	34257	42357	

1.2 Addition

i. Add numbers up to 5 -digits.
ii. Solve real life number stories involving addition of numbers up to 5 -digits.

1. Add the following.
a) 78392

+ 12635
\square
b) 90243
$+8735$

c) 10556
$+80357$

d) 44321
$+6748$

2. Arrange the numbers vertically and solve.

a) $42352+67543$	b) $24568+35312$
c) $98756+50744$	

3. Solve the problems.

	Problems	
a)	86284 tourists visited a zoo in the months of June and July altogether. If 47876 of them visited in June how many tourists visited in July?	
b)	Shoaib donates Rs 56780 to an orphanage for their education and Rs 46980 for their food. How much total amount does he donate?	
c)		
Kanwal travelled 723672 km in one month. The next month she travelled 31716 km. How much did she travel in two months?	Answer: Rs	

1.3 Subtraction

i. Subtract numbers up to 5 -digits.
ii. Solve real life situations involving subtraction of numbers up to 5 -digits.

1. Subtract the following.
a) 43598

- 26738
\qquad
b)
-9058

c) 53129
-45391

d) 99012
- 53849

2. Arrange the numbers vertically and solve.

a) $74638-33545$	b) $85964-74544$
c) $99754-68245$	d) $64583-8245$
e) $59004-57838$	f) $11526-8705$

3. Solve the problems.

	Problems	
a)	Saad has a bag of 67388 marbles. If she looses 29985 of them, how many are left?	
b)	Javeria needs Rs 67500 to buy a new TV. If she has Rs 58450, how much more does she need?	

\qquad pages

1.4 Multiplication

i. Multiply numbers up to 4 -digit by numbers up to 2-digit.
ii. Solve real life situations involving multiplication of numbers up to 4-digit by 2-digit.

1. Multiply the following.
a)
598
$\times 26$
b)
6437
$\times 88$
c)
1109
$\times 73$
d) 9572
$\times 34$
2. Arrange the numbers vertically and solve.

a) 6048×53	b) 7973×67	c) 9020×50
d) 5390×68	e) 6086×80	f) 5941×99

3. Solve the problems.
$\left.\begin{array}{|l|l|l|}\hline \text { a) } & \text { Problems } & \text { Working } \\ \text { A factory produces } \\ \text { 1084 foot balls in a } \\ \text { day. How many will it } \\ \text { produce in 25 days? }\end{array}\right] \quad$ Answer:

1.5 Division

i. Divide numbers up to 4 -digit by numbers up to 2 -digit.
ii. Solve real life situations involving division of numbers up to 4-digit by a number up to 2-digits.

1. Divide the following.
a) $4 2 \longdiv { 6 9 7 2 }$
b) $8 8 \longdiv { 1 8 4 8 }$
c) $3 5 \longdiv { 1 4 7 0 }$
d) $7 9 \longdiv { 9 5 5 9 }$

Unit 1 | Whole Numbers and Operations

2. Solve the following.

a) $6125 \div 10$	b) $7392 \div 32$	c) $1200 \div 75$
	e) $2788 \div 68$	f) $3465 \div 55$
d) $9641 \div 31$		

3. Solve the problems.

| a) | Problems
 There were 3198 sheep
 to be shared equally
 into 39 paddocks. How
 many would there be
 in each paddock? | |
| :--- | :--- | :--- | :--- |
| b) | | |
| Khursheed has 1998
 metres of material to
 make curtains. He
 shares the material
 equally to his 54
 tailors, how much
 does each receive? | Answer: | |

\square pages
1.5 Division
iii. Solve real life situations using appropriate operations of addition, subtraction, multiplication and division of numbers up to 2-digits.

1. Solve following real life problems using appropriate operations.

	Problems	Working
a)	A shopkeeper has 2150 boxes of 25 erasers each. How many erasers are there in all the boxes altogether?	Answer: \square erasers
b)	The cost of 32 buses is Rs 9920. What is the cost of one toy bus?	Answer: Rs
c)	There are 20755 total students in schools of a town. If 9800 of them are girls, how many boys are there?	Answer: \square boys
d)	An NGO plants 21345 trees in one month and 30993 in another months. How many total trees does it plant in both the months?	Answer: \square trees
e)	Zaib buys 4 cup-cakes and Nuzhat buys 7 pan cakes from a bakery. The cost of one cup cake is Rs 120 and the cost of one pan cake is Rs 110 . How much do Zaib and Nuzhat spend altogether?	Cost of 4 cup cakes: Rs \qquad Cost of 7 cup cakes: Rs \square Answer: \square pages

1.6 Number Patterns

i. Recognize a given increasing and decreasing pattern by stating a pattern rule.
ii. Describe the pattern found in a given table or chart
iii. Complete the given increasing and decreasing number sequence

1. Write rules for each increasing and decreasing pattern.

Pattern	Rule
a) $0,3,6,9,12, \ldots$	
b) $100,95,90,85, \ldots$	
c) $24,26,28,30, \ldots$	
d) $150,200,250,300, \ldots$.	
e) $9000,8000,7000,6000, \ldots$	

2. Complete the following patterns.
a) $56,53,50, \square, 44$
b) $110, \square, 130,140,150, \square$
c) $\square, 19,15,11, \square, 3$
d) 4 , $24,34,44$
3. Follow the rule and write down the first three terms of the pattern.

Rule	Pattern
a) Start with 7 and add 10.	
b) Start with 12 and add 2.	
c) Start with 55 and subtract 5.	
d) Start with 93 and subtract 3.	
e) Start with 130 and subtract 10.	

4. Make your own rule and write down the first three terms using your rule.

My Rule is: \qquad
Pattern is: \square 1. 1.

2.1 Divisibility Tests

i. Identify divisibility rules for $2,3,5$, and 10 .
ii. Use divisibility tests for $2,3,5$ and 10 on numbers up to 5 digits.

2.2 Prime and composite numbers

i. Identify and differentiate 2-digit prime and composite numbers

1. Which of the following numbers are divisible by 3 ? Circle the numbers.
a) 5832
b) 133
c) 417
d) 20004
e) 332
2. Circle all the numbers that are not divisible by 5 ?

552	6785	76480	1183
790		1389	70
6637	95	55556	3865

3. Underline the numbers which are divisible by 2 , circle the numbers that are divisible by 10 and then fill in the given box.

4. What is the only one even prime number?
5. Find any two prime numbers between 30 and 45 .
6.

List down all the factors of 88 .
7.

List down first 3multiples of 25.
8. Write all composite numbers between 75 and 84 .

2.3 Factors and multiples

i. Find factors of a number up to 50 .
ii. List the first ten multiples of a 1-digit number.
iii. Differentiate between factors and multiples

2.4 Prime Factorization

i. Factorize a number by using prime factors.
ii. Determine common factors of two or more 2-digit numbers.
iii. Determine common multiples of two or more 2-digit numbers.

1. List down the factors of each number.

a) 16		b) 32	
c) 24		d) 49	
e) 25		f) 42	

2. Write first four multiples of each number.

a) 8		b) 6	
c) 4		d) 9	

3. Complete the following factor trees to show the prime factors of these numbers.
a)

d)

4. Find out the prime factors.
a)

b)

c)

5. Find first 3 common multiples of the following set of numbers.

	Numbers	3 Common Multiples		Numbers	3 Common Multiples
a)	12 and 14		c)	4 and 6	
b)	10, 12, and 15		d)	3,6 and 12	

6. Find common factors of the following.

	Working	Common factors
a) 26 and 78		
b) 16 and 24		
c) 13 and 39		
d) 7,21 , and 28		
e) 32,48 , and 56		

3.1 Fractions

i. Recognize like and unlike fractions.
ii. Compare two unlike fractions by converting them to equivalent fractions with the same denominator.
iii. Simplify fractions to the lowest form

3.2 Types of Fractions

i. Identify (unit, proper, improper) fractions and mixed numbers.

1. Match the following.

a) $\frac{1}{3}, \frac{1}{26}, \frac{1}{100}$		
b) $\frac{8}{3}, \frac{35}{6}, \frac{78}{10}$		mixed numbers
c) $4 \frac{1}{3}, 2 \frac{1}{26}, 5 \frac{1}{100}$	like fractions	
d) $\frac{5}{18}, \frac{2}{18}, \frac{7}{18}$	unit fractions	

2. Compare the given fractions and fill in the blanks with \langle or \rangle.

a) $\frac{2}{5} \square \frac{3}{10}$	b) $\frac{3}{4} \square \frac{5}{6}$	c) $\frac{11}{12} \square \frac{9}{10}$
d) $\frac{7}{14} \square \frac{12}{28}$	e) $\frac{15}{24} \square \frac{7}{12}$	f) $\frac{1}{3} \square \frac{5}{9}$

3. Reduce the following to the simplest/lowest term.

a) $\frac{16}{20} \longrightarrow \square$	b) $\frac{28}{40} \longrightarrow \square$	c) $\frac{60}{84} \longrightarrow \square$
d) $\frac{15}{64} \longrightarrow \square$	e) $\frac{25}{100} \longrightarrow \square$	f) $\frac{12}{144} \longrightarrow \square$

3. Use the fraction walls below to answer true or false.

a) $\frac{1}{2}<\frac{1}{4}$
b) $\frac{1}{3}>\frac{1}{6}$
c) $\frac{1}{4}=\frac{3}{8}$
d) $\frac{1}{6}<\frac{3}{12}$
e) $\frac{2}{5}>\frac{3}{10}$
f) $\frac{2}{5}=\frac{4}{10}$
g) $\frac{3}{8}>\frac{1}{4}$
h) $\frac{10}{12}>\frac{5}{6}$
i) $\frac{7}{8}<\frac{3}{4}$
j) $\frac{6}{12}=\frac{1}{3}$
\square
\square
\square
\square
\qquad

3.2 Types of Fractions

ii. Convert improper fractions to mixed numbers and vice versa
iii. Arrange fractions in ascending and descending order.

1. Label the mixed numbers below.
a)

b)

c)

2. Write the following as mixed numbers.

	Improper Fractions	Mixed Number		Improper Fractions	Mixed Number
a)	$\frac{14}{3}$		b)	$\frac{76}{12}$	
c)	$\frac{35}{4}$		d)	$\frac{40}{6}$	
e)	$\frac{51}{9}$		f)	$\frac{11}{5}$	

3. Write the following as improper fractions.

	Mixed Number	Improper Fractions
a)	$6 \frac{3}{5}$	
c)	$5 \frac{6}{8}$	
e)	$9 \frac{2}{6}$	

	Mixed Number	Improper Fractions
b)	$5 \frac{2}{9}$	
d)	$3 \frac{4}{7}$	
f)	$4 \frac{8}{9}$	

4. Make the denominators of given fractions same and then arrange them in ascending order. (from smallest to largest).

Fractions			Fractions with same denominators			Ascending order
$\frac{3}{7}$	$\frac{9}{14}$	$\frac{1}{2}$				
$\frac{11}{16}$	$\frac{5}{8}$	$\frac{3}{4}$				

3.3 Addition and Subtraction of fractions
i. Add fractions with like denominators
ii. Subtract fractions with like denominators

3.4 Multiplication of fractions

i. Multiply a fraction and mixed number by a whole number
ii. Multiply two fractions and mixed numbers

3.5 Division of fractions

i. Divide a fraction and mixed number by a whole number
ii. Analyse real-life situations involving fractions by identifying appropriate number operations

1. Add these fractions.

a) $\frac{4}{9}+\frac{3}{9}=\square$	b) $\frac{7}{12}+\frac{2}{12}=\square$	c) $\frac{5}{11}+\frac{5}{11}=\square$
d) $\frac{4}{18}+\frac{5}{18}=\square$	e) $\frac{11}{21}+\frac{17}{21}=\square$	f) $\frac{19}{55}+\frac{24}{55}=\square$

2. Subtract the following fractions.

a) $\frac{12}{15}-\frac{14}{15}=\square$	b) $\frac{8}{9}-\frac{4}{9}=\square$	c) $\frac{10}{11}-\frac{2}{11}=\square$
d) $\frac{18}{20}-\frac{9}{20}=\square$	e) $\frac{22}{35}-\frac{9}{35}=\square$	f) $\frac{79}{80}-\frac{47}{80}=\square$

3. Add the fractions to produce an improper fraction, then change it into a mixed numeral.

Addition	Improper Fractions	Mixed Number	Addition	Improper Fractions	Mixed Number
a) $\frac{5}{8}+\frac{6}{8}$			b) $\frac{7}{12}+\frac{8}{12}$		
c) $\frac{3}{5}+\frac{7}{5}$		-	d) $\frac{9}{10}+\frac{4}{10}$		
e) $\frac{11}{12}+\frac{5}{12}$		-	f) $\frac{11}{12}+\frac{2}{12}$		

4. Solve the following and then simplify the fraction to the lowest form.

Multiplication	Solution	Lowest form
a) $\frac{5}{8} \times 2$		
b) $2 \frac{5}{4} \times 5$		
c) $\frac{3}{20} \times 4$		
d) $\frac{4}{12} \times 7$		

e) $20 \frac{3}{7} \times 3$		
f) $\frac{9}{10} \times \frac{5}{6}$		
g) $3 \frac{3}{7} \times 2 \frac{6}{2}$		
h) $5 \frac{3}{7} \times 4 \frac{6}{2}$		

5. Divide.

a) $\frac{49}{4} \div 7=\square$	b) $2 \frac{4}{5} \div 4=\square$	c) $\frac{5}{8} \div 15=\square$
d) $\frac{23}{5} \div 23=\square$	e) $\frac{18}{24} \div 3=\square$	f) $5 \frac{7}{9} \div 35=\square$

6. Solve the following problems.

	Problems	Working
a)	Maheen had $\frac{3}{12}$ of a cake. Shuja had $\frac{7}{12}$ of a similar cake. How much cakes did they have altogether?	Answer: \square cake
b)	Ali took $\frac{3}{8}$ of a plate of biryani, and gave $\frac{1}{3}$ to his friend. What fraction of the biryani is still left?	Answer:
c)	Umair takes $\frac{3}{4}$ hours to complete a painting. How long does he take to paint $\frac{1}{6}$ of the painting?	Answer: \square hours
d)	Sumera cuts a $\frac{9}{10} \mathrm{~m}$ long rope into 3 equal pieces. What is the length of each piece?	Answer: \square m
e)	Qadir spent $\frac{4}{5}$ of Rs 360 on fast food. How much did he spend?	Answer: Rs

4.1 Decimals

i. Recognize a decimal number as an alternative way of writing a fraction.
ii. Express a decimal number as a fraction whose denominator is 10,100 or 1000 .
iii. Identify and recognize the place value of a digit in decimals (up to 3-decimal places).

1. Write a fraction and decimal for each shaded region. The first one has been done for you.

a)	b)	c)
decimal: 0.6	decimal: \square	decimal:
fraction: $\frac{6}{10}$	fraction: \square	fraction:
d)	e)	f)
decimal:	decimal: \square	decimal:
fraction:	fraction:	fraction:

2. Write the place value of the following.

3. Shade the box with correct place value of the underlined digits.

a) $32.3 \mathbf{2 z}$	tenths	hundredths	thousandths
b) $86.20 \underline{\mathbf{5}}$	tenths	hundredths	thousandths
c) 64.39	tenths	hundredths	thousandths
d) $1 . \underline{2} 34$	tenths	hundredths	thousandths
e) $5.00 \underline{4}$	tenths	hundredths	thousandths

4. Solve the riddles. Select the numbers from the given number bank.

4.2 Conversion between fractions and decimal numbers
i. Convert a given fraction to a decimal if

- Denominator of the fraction is 10,100 or 1000.
- Denominator of the fraction is not 10,100 or 1000 but can be converted to 10,100 or 1000.
ii. Convert a decimal (up to 3-decimal places) to fraction.

1. Complete the following table.

2. Convert the following into decimal numbers.

a) $\frac{65}{10} \longrightarrow \square$	b) $\frac{7635}{1000} \longrightarrow \square$
c) $\frac{3518}{100} \longrightarrow \square$	d) $\frac{280}{100} \longrightarrow \square$
e) $\frac{8}{1000} \longrightarrow \square$	

3. Convert the following into decimal numbers.

	Equivalent fraction	Decimal Number
a) $\frac{2}{5}$	$\overline{10}$	
c) $\frac{1}{2}$	$\overline{10}$	
e) $\frac{4}{25}$	$\overline{100}$	

| | Equivalent
 fraction | Decimal
 Number |
| :--- | :---: | :---: | :---: |
| b) $\frac{177}{20}$ | $\overline{100}$ | |
| d) $\frac{457}{250}$ | $\overline{1000}$ | |
| f) $\frac{85}{200}$ | $\overline{1000}$ | |

4.3 Basic operations on decimals numbers

i. Add and subtract 3 -digit numbers (up to 2 decimal places).

1. Write decimal for each shaded part and add both. Give your answer in decimal and shade the region.
2. Add the following.

Line up the digits in such a way that decimal points come underneath one another.

| a)$4.28+2.6$ b) $6.53+3.67$ c) $0.04+0.73$
 4.28
 +2.60

 d) $9.2+1.18$ e) $15.4+9.68$ f) $21.63+73.04$

 | |
| :--- | :--- | :--- |

3. Write decimal for each shaded part and subtract. Give your answer in decimal.

a)			b)			c)				
$x \times$			\| $\times 1 \times \times \times$			\times				
$\times \mathrm{x}$			$\times \times \times \times$			- \times				
- \times			+ $\times \times$			\times				
+ \times			-			-				
\|										
$\times \times$			$\times \times \times$		\cdots					
+ \times			- $\times \times$							
$\times \mathrm{x}$ x										
\| $\times 1$			\| $\times \times \times$							
\| $\times 1 \times 1$			\| $\times \times \times 1$		\square					\square
0.8	- 0.2	$=0.6$	--	$\square=$	$=\square$		$\square-$			

4. Solve the following.

a) $76.4-28.3$	b) $9.44-6.37$	c) $15.8-8.9$
d) $0.8-0.04$	e) $61.1-3.87$	f) $17.5-16.6$

4.3 Basic operations on decimals numbers

ii. Multiply a 2-digit number (up to 1 decimal place) by 10, 100, and 1000.
iii. Multiply a 2 -digit number with 1 decimal placeby a 1 -digit number.
iv. Divide a 2-digit number with 1 decimalplace by a 1-digit number
v. Solve real life situations involving 2-digit numbers with 1 decimal place using appropriate operations.

1. Solve the following.

a) 6.4×10	b) 8.1×100	c) 3.7×1000
	e) 0.2×100	f) 0.9×1000

2. Multiply.

a) 6.4×2	b) 7.8×3	c) 5.0×8
d) 0.3×9	e) 0.1×4	f) 2.5×5

3. Divide.

a) $7.4 \div 2$	b) $8.4 \div 4$	c) $3.6 \div 9$

d) $0.8 \div 8$	e) $2.7 \div 3$	f) $0.7 \div 7$

4. Solve these problems.

	Problems	Working	
a)	A two coloured ribbon is 9.8 cm long. 5.9 cm of the ribbon is blue and the remaining part is red in color. What is the length of red coloured part?		
b)	A leopard eats 4.5 kg of meat per day. How much will it eat in a week? (Hint: 7 days in a week)	Answer:	
c)	Babar invites his 9 friends on iftar and prepares 3.6 l juice for them. If he distributes the juice equally among his friends how much juice will each get?	Answer:	

4.4 Estimation

i. Round off a whole number to the nearest 10,100 , and 1000.
ii. Round off decimal (with 1 or 2 decimal places) to the nearest whole number.

1. Round off the following to the nearest 10 .
a) $38 \longrightarrow$
c) 6177

b) $981 \longrightarrow$
d) $4565 \rightarrow \square$
2. Round off the following to the nearest 100 .

3. Round off the following to the nearest 1000.

a) $6729 \longrightarrow \square$	b) $2487 \longrightarrow \square$
c) $8529 \longrightarrow \square$	d) $9045 \longrightarrow \square$

4. Round off the following decimal numbers to the nearest whole numbers.

a) $67.28 \longrightarrow \square$	b) $19.7 \longrightarrow \square$
c) $84.05 \longrightarrow \square$	d) $326.56 \longrightarrow \square$

5. Tick the correct option(s) for each rounded number given in column B. (There can be multiple correct options)

	A	B	Rounded off to the nearest $\mathbf{1 0}$	Rounded off to the nearest $\mathbf{1 0 0}$	Rounded off to the nearest $\mathbf{1 0 0 0}$
a)	8263	8300			
b)	1029	1000			
c)	6635	6640			
d)	7409	7410			
e)	2101	2100			
f)	8546	9000			

5.1 Length

i. Use standard metric units to measure the length of different objects.
ii. Convert larger to smaller metric units (2-digits numbers with one decimal place)

- kilometers into meters
- meters into centimeters
- centimeters into millimeters
iii. Add and subtract measures of length in same units

1. Which measuring unit would you use to measure:
a) the thickness of your math book?
b) the distance from Karachi to Islamabad?
c) the width of a needle?
d) the height of a door?
($\mathrm{cm}, \mathrm{m}, \mathrm{km}$)
($\mathrm{mm}, \mathrm{cm}, \mathrm{km}$)
($\mathrm{mm}, \mathrm{m}, \mathrm{km}$)
($\mathrm{mm}, \mathrm{c}, \mathrm{km}$)
2. Add the following.

a) $6 \mathrm{~km} 15 \mathrm{~m}+91 \mathrm{~km}$	b) $78.25 \mathrm{~m}+92.27 \mathrm{~m}$
c) $0.358 \mathrm{~cm}+17.03 \mathrm{~cm}$	d) $72 \mathrm{~cm} \mathrm{1} \mathrm{mm+10cm7mm}$
e) $21 \mathrm{~m} 16 \mathrm{~cm}+20 \mathrm{~m}$	f) $27.65 \mathrm{~km}+0.09 \mathrm{~km}$

5.2 Mass

i. Use standard metric units to measure the mass of different objects.
ii. Convert larger to smaller metric units (2-digits numbers with one decimal place)

- Kilograms into grams
- Grams into milligrams
iii. Add and subtract measures of mass in same units

1. Which measuring unit would you use to measure:
a) the mass of a sack of rice?
b) the mass of a small feather?
($\mathrm{mg}, \mathrm{g}, \mathrm{kg}$)
c) the mass of your friend?
($\mathrm{mg}, \mathrm{g}, \mathrm{kg}$)
d) the mass of small pack of chips?
2. Add the following.

a) $43 \mathrm{~kg}+32792 \mathrm{~kg}$	b) $78.25 \mathrm{~g}+92.27 \mathrm{~g}$
c) $0.38 \mathrm{mg}+17.03 \mathrm{mg}$	d) $61 \mathrm{~g} 4 \mathrm{mg}+14 \mathrm{~g} 630 \mathrm{mg}$
e) $53 \mathrm{~kg} 122 \mathrm{~g}+98 \mathrm{~g}$	f) $27 \mathrm{~g} 16 \mathrm{mg}+60 \mathrm{~g} \mathrm{14mg}$

3. Subtract the following.

a) $93572 \mathrm{~kg}-8329 \mathrm{~kg}$	b) $58.65 \mathrm{mg}-2.38 \mathrm{mg}$
c) $50.66 \mathrm{~g}-45.08 \mathrm{~g}$	d) $58 \mathrm{~g} \mathrm{500mg-27g} \mathrm{300} \mathrm{mg}$
e) $35 \mathrm{~kg} \mathrm{762g} \mathrm{-} \mathrm{H} 35 \mathrm{~g}$	f) $88 \mathrm{~kg} \mathrm{458g} \mathrm{-} \mathrm{29kg} \mathrm{402g}$

4. Convert the following as required.

b) $6.9 \mathrm{~g}=\square \mathrm{mg}$

d) $32 \mathrm{~kg} 167 \mathrm{~g}=\square \mathrm{g}$
e) $63 \mathrm{~g} \mathrm{778} \mathrm{mg}=$ \square mg
f) $2.7 \mathrm{~kg}=$ \square
g) $15 \mathrm{~kg} \mathrm{185g=} \mathrm{\square g}$
h) $5.5 \mathrm{~g}=\square \mathrm{mg}$

5.3 Capacity

i. Use standard metric units to measure the capacity of different containers.
ii. Convert larger to smaller metric units (2-digit numbers with one decimal place) liters into milliliters
iii. Add and subtract measure of capacity in same units

1. Which measuring unit would you use to measure:
a) the capacity of a tea spoon? (ml, l)
b) the capacity of a water tank?
c) the capacity of a car's petrol tank?
d) the capacity of a glass of water?
2. Add the following.

a) $483 /+2792 \mathrm{l}$	b) $78.25 l+92.27 \mathrm{l}$
c) $0.315 \mathrm{ml}+15.05 \mathrm{ml}$	d) $34 / 400 \mathrm{ml}+612 / 387 \mathrm{ml}$
e) $853 \mathrm{ml}+62 / 25 \mathrm{ml}$	f) $89 /+32 / 45 \mathrm{ml}$

3. Subtract the following.

a) $579 /-3591$	b) $4.6 /-2.31$

c) $8.9 \mathrm{ml}-5 \mathrm{ml}$
d) $78 / 128 \mathrm{ml}-54 / 87 \mathrm{ml}$
e) $94 / 543 \mathrm{ml}-17 /$
f) $291 \mathrm{ml}-29 \mathrm{ml}$
4. Convert the following as required.

a) $48 \mathrm{l}=\square \mathrm{ml}$	b) $5.8 \mathrm{l}=\square \mathrm{ml}$
	d) $5121=\square \mathrm{ml}$
	ml
	f) $2.7 \mathrm{kl}=\square \mathrm{ml}$
e) $91 / 367 \mathrm{ml}=\square \mathrm{ml}$	

5.3 Capacity

iv. Solve real-life situations involving conversion, addition and subtraction of measures of length, mass and capacity

1. Solve the following problems.

	Problem	Working
a)	K2 is the second highest peak in the world. Its height is 8 km 611 m . The height of Mount Everest is 8 km 848 m . Calculate the difference between their heights. Give your answer in metres.	Answer: \square m
b)	The mass of Sahil is 35 kg . Tariq's mass is 8 kg more than Sahil's mass. What is the mass of Tariq? Express the mass in grams.	

\qquad I

	d)	A pizza weighs 365 g . If 45 g of extra toppings are added to it what will be the new mass of the pizza?	Answer:	g
$\stackrel{n}{4}$	e)	A rectangular jogging track has a length of 15.5 m and breadth of 18.5 m . Find the total distance covered to complete the track once.	Answer:	m
Unit 5 \| Measure	f)	Zainab wants to make 3.56 I of an orange drink. She has 0.67 I of orange concentrate. How much water does she need to add to make the required amount of drink? Give your answer in terms of ml .	Answer:	ml
	g)	Shazia had a 70 cm long ribbon. She cut 38.5 cm long ribbon from it. What is the length of the remaining part of the ribbon? Express your answer in terms of millimetres.		
40 XFORD			Answer:	mm

5.4 Time

i. Read and write the time using digital and analogue clocks on 12 -hour and 24 -hour format.

1. Write the time in 12 -hour and 24 -hour format.

Clocks	12-hour format	24-hour format
a) Sumbul wakes up.		
b) Sumbul plays in a park.		
c) Sumbul takes her lunch.		
d) Sumbul eats her breakfast.		
e) Sumbul goes to sleep.		

2. Look at the following clocks and write down the time in hours, minutes, and seconds.
The first one has been done for you.

5.4 Time

ii. Convert hours to minutes and minutes to seconds.
iii. Convert years to months, months to days, and weeks to days.

1. Convert the following as required.

a) $3 \mathrm{~h}=\square \mathrm{min}$	b) $150 \mathrm{~min}=\square \mathrm{sec}$
c) $15 \mathrm{~h} 20 \mathrm{~min}=\square \mathrm{min}$	d) $22 \mathrm{~min} 30 \mathrm{sec}=\square \mathrm{sec}$
e) $\frac{3}{4} \mathrm{~h}=\square \mathrm{min}$	f) $18 \mathrm{~h} 40 \mathrm{~min}=\square \mathrm{min}$
g) $\frac{1}{3} \mathrm{~min}=\square \mathrm{mec}$	h) $2 \frac{1}{2} \mathrm{~h} 10 \mathrm{~min}=\square \mathrm{min}$

2. Convert the following as required.
a) 5 years $=$ \square months
b) 8 months $=\square$ days
c) 12 weeks $=\square$ days
d) 22 weeks 3 days $=$ \square days
e) 16 years 3 months $=\square$ months
f) 18 months 29 days $=\square$ days
g) $\frac{1}{3}$ years $=\square$ months
h) $2 \frac{1}{2}$ months $=\square$ days

5.4 Time

iv. Add and subtract measures of time without carrying and borrowing.
v. Solve simple real-life situations involving conversion, addition and subtraction of measures of time.

1. Add the following.

a) | \mathbf{h} | $\boldsymbol{\operatorname { m i n }}$ | $\mathbf{s e c}$ |
| :---: | :---: | :---: |
| 08 | 24 | 15 |
| +14 | 30 | 25 |
| | | |

b) $h \quad \min \sec$ 2238 47
$+051602$

c) | \mathbf{h} | $\boldsymbol{\operatorname { m i n }}$ | $\mathbf{s e c}$ |
| :---: | :---: | :---: |
| 15 | 09 | 04 |
| +12 | 50 | 43 |
| | | |

d) $h \quad \min \mathrm{sec}$
1740 26

$$
\begin{array}{lll}
+20 & 17 & 31
\end{array}
$$

e) years months days

4	08	15
+3	02	11

f) years months days

7	10	23
+6	01	04

g) years months days

12	11	09
+10	00	17

h) years months days
$36 \quad 02 \quad 28$
$+050901$

2. Subtract the following.
a)
min
sec
1642
37

- 4
20
15

e) years months days

7	11	25
-5	08	21

g) years months days

12	10	27
-10	06	17

d) | \mathbf{h} | $\mathbf{m i n}$ | $\mathbf{s e c}$ |
| :---: | :---: | :---: |
| 19 | 55 | 42 |
| -15 | 30 | 01 |

f) years months days
130618
$-10 \quad 03 \quad 13$

h) years months days
$35<07 \quad 29$

- 14

02
10
3. Solve the problems.

	Problem	
a)	A train left a station at 09 19 hrs and reached another station after 5 hours 25 minutes. What time was that?	
b)	Sarim arrived at the bus stop at 09: 15 am. He was late; the bus left 20 minutes before his arrival. At what time did the bus leave?	

	c)	Mishaal went abroad for higher studies. She came back to her hometown after 4 years and 3 months. How many total months did she spend there?	Answer:
	d)	A plumber worked for 5 hrs 30 minutes in the morning and 4 hrs 23 minutes later in the day. How long did he work in the whole day?	Answer:
	e)	A movie started at 06:20 p.m. and ended at 08:35 p.m. What was the duration of the movie? Express you answer in minutes.	Answer:
	f)	Humaira was 5 years 3 months when she joined school. Today she is 10 years 2 months. For how long has she been in school?	Answer:
	g)	In an examination paper, the total time allowed was 2 hours 30 minutes. Maria completed first part of the paper after 1 hour 25 minutes. How much time is left for her to complete the paper?	
XFORD			Answer:

6.1 Lines

i. Recognize and identify parallel and non-parallel lines.

6.2 Angle

ii. Measure angles in degree (${ }^{\circ}$) by using protractor.
iv. Differentiate acute, obtuse and right angles.
v. Measure angles using protractor where

- Upper scale of protractor reads the measure of angle from left to right.
- Lower scale of protractor reads the measure of angle from right to left.

1. Look at the following boxes.

Answer the questions?
a) Which boxes contain right angles?
c) Which box contains acute angle? \square
b) Which box contains parallel lines?
d) Which boxes contain obtuse angles? \square
2. Measure these angles using protractor.

3. Identify the marked angles as acute, obtuse and right angles.

6.2 Angle

iii. Draw an angle of given measurement and use the symbol (\angle) to represent it.
iv. Differentiate acute, obtuse and right angles.
vi. Identify right angles in 2-D shapes

1. Use the base line to construct the angles using protractor.

2. Classify these angles as acute, obtuse and right angle.

3. Here are some shapes. Draw a circle over all the right angles. The first one has been done for you.

b)

> c)
d)

e)
f)

g)

h)

6.3 Circle

i. Describe radius, diameter and circumference of a circle.
6.4 Perimeter and Area
i. Find perimeter of a 2-D figures ona square grid.
ii. Recognize that perimeter is measured in units of length.
iii. Find area of 2-D figures on a square grid.
iv. Recognize that area of a square is measured in meter square (m^{2}) and centimeter square (cm^{2})

1. Match the following.

The length of a line from the centre of a circle to any point on its edge.
Any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle.
The distance around a circle.

Diameter
Circumference
Radius

2. Write names of parts of the given circle using following letters.
[$A, B, C, D]$
a) Centre: \square
b) Radius:
d) Circumference:
3. Calculate the perimeter of the following shapes in
 centimetres. The shapes are drawn on $\mathbf{1 ~ c m}$ grid.

a) Shape A : \square cm
b) Shape B: \square cm
c) Shape C: \square cm
d) Shape D: \square cm
e) Shape E: \square cm
4. Calculate the area of the following shapes in square centimetres $\left(\mathrm{cm}^{2}\right)$.

The shapes are drawn on 1 cm grid.

																			-	
																		7		
		A							B								7			
																7				
																7		C		
															7					
														7						
				D	D															
															,					
												G		,						
		E					F													
													\checkmark							
												$\overline{1}$								
	Shap	pe A	$A=$			cm^{2}				b)		Shap	pe B			cm^{2}				
	Sh	e C	$C=$		Cm	cm^{2}				d)		Shap	pe D	$D=$		cm				
e)	Shap	pe E	$E=$			m^{2}				f)		Shap	pe F	$F=$		cm^{2}				
g)	Sha	e	$\mathrm{G}=$		C	cm^{2}														

5. Find out the perimeter and area of the following shape if it is drawn on 1 metre grid. Choose the correct unit.

Perimeter $=\square \mathrm{cm} \mathrm{m}$
Area $=\quad \square \mathrm{cm}^{2} \mathrm{~m}^{2}$

6.5 Symmetry

i. Recognize lines of symmetry in two-dimensional (2-D) shapes.
ii. Complete a symmetrical figure with respect to a given line of symmetry on square grid/ dot pattern.

1. How many lines of symmetry do the following shapes have?

2. Complete each shape with respect to the given line of symmetry. Lines of symmetry are shown by dotted lines.

b)

c)

6.6 Three Dimensional (3-D) objects

i. Compare and sort 3 D objects (cubes, cuboids, pyramids, cylinder, cone, sphere)

1. Fill in the banks using the given word bank.
cone cylinder circular cube triangular cuboid
a) \square and \qquad have same number of edges.
b) Pyramid with a square base has four \square faces.
c) \square has two circular faces.
d) \square has only one vertex.
e) Cone has only one \square surface.
2. Put a cross on all the pyramids.
3. Solve the riddles for 3D shapes using given shapes bank.

cube				cuboid

	Riddles	
a)	I have no edges. I have no vertices. I only have a curved surface.	
b)	I have 8 vertices. I have 6 surfaces. All my faces are square in shape.	
c)	I have 8 vertices. I have 6 faces. I am not a cube. My faces can be rectangle and square in shape.	
d)	I have 5 vertices. I have 5 surfaces. 4 surfaces are triangular in shape.	
e)	I have 2 surfaces. I have one edge that is curved. I have 1 vertex.	

7.1 Bar Graph

i. Read simple bar graphs given in horizontal and vertical form.
ii. Interpret real life situations using data presented in bar graphs.

1. Class 4 of a school surveyed how they travelled to school. They showed the results using a bar graph given below.

Use the bar graph to answer the following.
a) How many children travelled to school by
i) car?

ii) van?
iii) bike?

b) How many children were there in class 4? \square
c) How many more children travelled by car than by bike? \square
d) One of the children of class 4 represented the same results as shown below. Is there any error in his graph? What is that error?

2. Furqan works in an ice-cream shop. The bar graph shows the number of ice-creams sold over five days.

Use the bar graph to answer the questions.
a) 400 ice-creams were sold on \qquad .
b) The same number of ice-creams was sold on \qquad and \square.
c) How many more ice-creams were sold on Tuesday than Thursday? \square
d) Which day is the busiest in all?
3. Nora went to the zoo with her family. She drew a bar graph to show the number of four different types of animals that she saw.

Look at the bar graph and fill in the blanks.
a) There are \square bears.
b) There are 12 \square
c) There are fewer monkeys than \square
d) There are 3 more \square than \square

7.2 Line Graph

i. Read line graph.
ii. Interpret real life situations using data presented in line graphs.

1. Bano made a graph to represent the number of customers in her shop during the day.

Use the graph to answer the questions.
a) What was the busiest hour? \square
b) How many people were in the shop at 9 am? \qquad
c) Estimate the number of people in the shop at 12:30. \square
d) How many more people were in the shop at 4 pm compared to 5 pm ?
\qquad
2. The line graph shows the number of vacuum cleaners sold by an electronics store every month from January to May.

Look at the line graph and answer the questions.
a) How many vacuum cleaners were sold in March? \square
b) At which month did the store sell the greatest number of vacuum cleaners? \qquad
c) How many more vacuum cleaners were sold in April than in March?
\square
d) What is the difference in the number of vacuum cleaners sold in April and in May?

7.3 Pie Chart

i. Read Pie Chart.
ii. Interpret real life situations using data presented in Pie Chart.

1. The pie chart shows the number of pupils with and without glasses in a class. There are 20 girls in the class.
a) How many boys are there in the class?
\square
b) How many girls wear glasses?
\square
c) How many pupils do not wear glasses?
\square
d) How many pupils are there in the class?
\square
2. The pie chart shows the number of books of different genres on a book shelf. Read the pie chart and answer the following.
a) How many books are there on the shelf?
\square
b) How many non-fiction books are there?
\square
c) How many horror books are there on the shelf?

Notes

\qquad
\qquad
62

OXFORD
UNivERstry Press

Notes

\qquad
\qquad
\qquad
\qquad

Don't be Book Piracy and Plagiarism are Crimes.

 Buy Genuine Oxford Books

 Buy Genuine Oxford Books}Look out for the new security label whenever you purchase an Oxford textbook or supplementary reader. Labels with the features shown below are proof of genuine Oxford books.

The image of Quaid's Mausoleum changes colour from orange to green when viewed from different angles.

The labels have security cut marks to prevent them from being peeled off and reused.

The word ‘ORIGINAL’ appears when the area under 'RUB HERE' is rubbed with a coin.

‘OUP' written in very small print becomes visible when viewed through a magnifying glass.

- Download free 'FPQR Tasdiq’ app from App Store/PlayStore on your smartphone.
- Scan QR code on the security label to verify if you have purchased a genuine Oxford book.

The labels tear if peeled off (6) from the book cover.

```
Pirated books can be recognised by:
- inferior production quality
- low-grade paper
- variations in texture and colour
- poor print quality
- blurred text and images
- poor binding and trimming
- substandard appearance of the book
```

Do not accept the book if the label is missing, has been torn or tampered with, the colour on the security label does not change, or the word 'ORIGINAL' does not appear upon rubbing the area with a coin.

If you suspect that you are being sold a pirated book without the security label, please contact:
Oxford University Press,
No. 38, Sector 15, Korangi Industrial Area, Karachi-74900, Pakistan. Tel.: (92-21) 35071580-86 Fax: (92-21) 35055071-72 Toll-free No.: 0800-68775 (9 a.m. to 5 p.m.; Monday to Friday)
Email: central.marketing.pk@oup.com
Website: www.oup.com.pk Find us on: 9

